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ABSTRACT

Near infared spectroscopy (NIRS) is a non-invasivemethod to
measure the brain activity as the changes of hemoglobin oxy-
genation through the intact skull. In this paper, we statistically
analyze the NIRS data based on general linear model (GLM)
and propose a new theory for making inference using Sun’s
tube formula. More speci cally, we calculate the p-values as
the excursion probability of an inhomogeneous Gaussian ran-
dom eld on a two dimensional representation manifold that
are dependent on the structure of error covariance matrix and
the interpolating kernels. These powerful tools for excursion
probability allows us the super-resolution localization of the
brain activation which is not possible using the conventional
NIRS analysis.

Index Terms— near infrared spectroscopy, general linear
model, statistical parametric mapping, excursion probability,
inhomogeneous Gaussian random eld, tube formula

1. INTRODUCTION

Near infrared spectroscopy (NIRS) is a non-invasive method
to measure the brain activity by measuring the absorption
changes of the near infrared light between 650 and 950 nm
through the intact skull [1]. Speci cally, the absorption
spectra of oxy-hemoglobin (HbO2) and deoxy-hemoglobin
(HbR) are distict in this region, so it is possible to determine
the concentration changes of oxy- and deoxy-hemoglobin
from diffusely scattered light measurement.

NIRS has many advantages over other neuroimaging
modalities such as positron emission tomography (PET),
functional magnetic resonance imaging (fMRI) or magne-
toencephalography (MEG). One of the main advantages is the
ability to measure a wide range of functional contrast such as
oxy-hemoglobin, deoxy-hemoglobin, and total hemoglobin.
Furthermore, high temporal resolution of NIRS allows us to
study temporal behaviors of the hemodynamic response to
neural activation and the origin of blood oxygenation level
dependent signal (BOLD).
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Recently, in NIRS domain, there have been many re-
searches in statistical analysis of NIRS based on the general
linear model (GLM) [2, 3]. GLM is a statistical linear model
that explains data as a linear combination of an explanatory
variable plus an error term. Because GLM measures the tem-
poral variational pattern of signals rather than their absolute
magnitude, GLM is robust to many cases even with a severe
optical signal attenuation due to scattering or poor contact.
Conventionally, Gaussian random eld theory has been used
for making the classical inference. The basic assumption
for Gaussian random led model is that the residuals after
the GLM tting are dense samples on lattice representations
from an underlying continuous Gaussian random eld due
to the Gaussian kernel smoothing [4]. However, because the
distance between each channel of NIRS is relatively far and
the number of measurements is small, it is not reasonable
to use Gaussian random eld theory in making inference of
NIRS data.

The main contribution of this paper is to propose a new
theory of statistical inference which is appropriate to NIRS.
Instead of calculating the excursion probability of the ho-
mogeneous Gaussian random led, NIRS calculates the ex-
cursion probability of inhomogeneous Gaussian random eld
obtained by interpolating samples on sparsely and irregularity
distributed optode locations. Even though excursion probabil-
ity for inhomogeneous random led is extremely dif cult to
calculate in general, the excursion probability for strikingly
similar inhomogeneous random eld model has been stud-
ied for the so-called global con dence region analysis of 3-
D parametric shape estimation problem [5] using Sun’s tube
formula [6]. For example, the p-value for the one side t-test
for oxy- or deoxy-hemoglobin concentration can be converted
into the excursion probability of Gaussian random eld on a
two dimensional representation manifold that are dependent
on the structure of covariance matrix and the interpolating
kernels. These powerful tools for excursion probability al-
lows the super-resolution localization of the brain activation
which is not possible using the conventional methods.
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2. MEASUREMENT MODEL FOR NIRS

The modi ed Beer-Lambert law (MBLL) which describes an
optical attenuation in a highly scattering medium like biolog-
ical tissue allows the transformation from raw optical den-
sity (OD) data to changes of chromophore concentrations.
According to the MBLL, the change in OD(λ, r, t) at the
wavelength λ from the cerebral cortex position r at time t
due to the Nc number of chromophore concentration changes
{Δc(i)(r, t)}Nc

i=1 is described as

�OD(λ, r, t) = −ln

(
IF

Io

)
=

Nc∑
i=1

ai(λ)�c(i)(r, t)d(r)l(r),

(1)
where IF denote the nal measured optical intensity, Io de-
notes the initial measured optical intensity, ai(λ) is the extinc-
tion coef cient of the i-th chromophore at the wavelength λ,
d(r) is the differential pathlength factor (DPF) at the position
r, respectively. Assuming that oxy- and deoxy- hemoglobin
are the major two choromophores, the noisy measured optical
density changes are then described as follow:

[
ΔOD(r, t; λ1)
ΔOD(r, t; λ2)

]
= d(r) · l(r) ·

[
a1(λ1) a2(λ1)
a1(λ2) a2(λ2)

]

·
[

ΔcHbO2 (r, t)
ΔcHbR(r, t)

]
+

[
w(r, t; λ1)
w(r, t; λ2)

]
,

(2)

where ΔcHbO2 (r, t), ΔcHbR(r, t) denote the time-series of
the chromophore changes for the oxy- and deoxy- hemoglobin;
and w(r, t; λ1), w(r, t; λ2) are the additive noise at the wave-
length λ1 and λ2, respectively. Then, by multiplying the
inverse matrix of the extinction coef cients with Eqn. (2), we
have the noisy measurement of oxy- and deoxy- hemoglobin
concentration changes:

[
yHbO2 (r, t)
yHbR(r, t)

]
=d(r)l(r)

[
ΔcHbO2 (r, t)
ΔcHbR(r, t)

]
+
[

εHbO2 (r, t)
εHbR(r, t)

]
,

(3)
where εHbO2(r, t) and εHbR(r, t) are additive zero mean
Gaussian noise for oxy- and deoxy- channel. In practice, it
is impossible to measure the exact value of d(r) and l(r).
This is because that the NIRS data acquisition is considerably
affected by variety of measurement conditions such as the
color of hair and the scalp depth, which make the position-
and subject- dependent scattering effect. Non-uniform con-
tact between optodes and a scalp might be another source of
the variation of sensitivities of detectors. There are other ex-
perimental issues such as the subject’s movement during the
experiment. For these reasons, analyzing NIRS data with the
absolute value of chromophore concentration is problematic.

3. GENERAL LINEAR MODEL FOR NIRS

In this section, we will show that GLM approach enables an
accurate analysis for NIRS. Even though we mainly focus
on the GLM for the oxy- hemoglobin concentration, exactly
same approach can be applied for deoxy- hemoglobin con-
centration.

Let y(i)
HbO2

∈ R
N and ε

(i)
HbO2

∈ R
N denote the time series

of the oxy- hemoglobin signal and noise at the i-th channel at
the location ri given by:

y(i)
HbO2

=
[

yHbO2 (ri, t1) · · · yHbO2(ri, tN )
]T

,(4)

ε
(i)
HbO2

=
[

εHbO2 (ri, t1) · · · εHbO2(ri, tN )
]T

.(5)

Then, corresponding GLM model is given by

y(i)
HbO2

= XHbO2β
(i)
HbO2

+ ε
(i)
HbO, (6)

where XHbO2 ∈ R
N×M denotes the design matrices for oxy-

hemoglobin, and β
(i)
HbO2

∈ R
M×1 is the corresponding re-

sponse signal strength at the i-th channel, respectively. By
stacking the measurements from all K channels, we have

yHbO2 =
(
IK×K ⊗XHbO2

)
βHbO2

+ εHbO2 , (7)

where IK×K denotes the K × K identity matrix, ⊗ is the
Kronecker product, and

βHbO2
=

⎡
⎢⎢⎢⎢⎣

β
(1)
HbO2

β
(2)
HbO2
...

β
(K)
HbO2

⎤
⎥⎥⎥⎥⎦ , εHbO2 =

⎡
⎢⎢⎢⎢⎣

ε
(1)
HbO2

ε
(2)
HbO2

...

ε
(K)
HbO2

⎤
⎥⎥⎥⎥⎦ ∈ R

KM×1 (8)

Using the property of the Kronecker product, the least square
estimation of βHbO2

is given by

β̂HbO2
=

(
IK×K ⊗X†HbO2

)
yHbO2 , (9)

where X†HbO2
=

(
XT

HbO2
XHbO2

)−1
XT

HbO2
denotes the

pseudo-inverse of XHbO2 . Under the null hypothesis, the
mean value of the response signal strength is zero. Hence, the
corresponding estimation error covariance matrix is given by

Cβ̂HbO2
= E

[
β̂HbO2

β̂
H

HbO2

]

=
(
IK×K⊗X†HbO2

)
CεHbO2

(
IK×K⊗X†THbO2

)
,(10)

where CεHbO2
denotes the error covariance matrix.

The main dif culty in analyzing NIRS is that there ex-
ists only small number of optode and the distance between
the optode is relative large; hence, direct application of Gaus-
sian random eld model for interference is not appropriate for
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NIRS. In order to study the correlation with fMRI, it is prefer-
able that the NIRS data should be interpolated to the same res-
olution as fMRI. Speci cally, the interpolated response signal
strength at r ∈ Ψ is given as follows:

α̂HbO2 (r) =
K∑

i=1

β
(i)
HbO2

bi(r)

=
(
b(r)T ⊗ IM×M

)
β̂HbO ∈ R

M , (11)

where b(r) denotes the interpolating kernel given by

b(r) =
[
b1(r) b2(r) · · · bK(r)

]T ∈ R
K×1. (12)

Usually, the response of the signal of interest is calculated by
inner product with a contrast vector:

XHbO2 (r) = cT α̂HbO(r)

= cT
(
b(r)T ⊗IM×M

)
β̂HbO2

= B(r)T β̂HbO2
. (13)

The corresponding error variance is

CX,HbO2 (r) = B(r)T Cβ̂,HbO2
B(r) (14)

Now, under the null hypothesis the response signal XHbO2 (r)
is distributed as zero mean Gaussian distribution:

XHbO2 (r) ∼ N (0, CX,HbO2 (r)) . (15)

Hence, the corresponding t- statistics is given by

THbO2 (r) =
B(r)T β̂HbO2√

B(r)T Cβ̂,HbO2
B(r)

. (16)

4. INFERENCE USING GLOBAL CONFIDENCE
REGION ANALYSIS

Assuming that the interpolating kernel can fully describe the
baseline signal between the optode locations, our goal is to
calculate the p-value where the null hypothesis can be aban-
doned. This can be calculated as the excursion probability of
the random eld interpolated from the sparse measurement.
Similar excursion probability has been extensively studied
for the so-called global con dence region analysis for 3-D
parametric shape estimation problem [5]. They showed that
the resultant random eld is inhomogeneous and its excur-
sion statistics can be calculated using Sun’s tube formula
[6]. Hence, we follow the approach in [5] and calculate the
p-values.

The p-value of the t- statistics to adandon null hypothesis
is given by

p = P

{
max
r∈Ψ

THbO2(r) ≥ z

}

=
1
2
P

{
max
r∈Ψ

|THbO2 (r)|2 ≥ z2

}

=
1
2
P

{
max
r∈Ψ

ZT PHbO2 (r)Z ≥ z2

}
. (17)

where Z ∼ N (
O, IKM×KM

)
denotes the zero-mean inde-

pendent Gaussian random vector and

PHbO2 (r)�C1/2

β̂,HbO2
B(r)CX,HbO2 (r)

−1BT (r)C1/2

β̂,HbO2
(18)

Using Eqs. (13) and (14), we have

PHbO2 (r) = uHbO2 (r)uHbO2 (r)T , (19)

where the unit vector uHbO2 is given by

uHbO2 =
C1/2

β̂,HbO2
B(r)√

B(r)T Cβ̂,HbO2
B(r)

. (20)

Ye et al [5] derived the two approximation for the proba-
bility in Eq. (17). First, the incomplete gamma bound comes
as following:

P

{
max
r∈Ψ

ZT PHbO(r)Z ≥ z2

}
≥ P

{
max
r∈Ψ

ZT Z ≥ z2

}

= 1− Γ
(

KM

2
.
z2

2

)
.(21)

For small number of channel (i.e. K is smaller), then incom-
plete gamma bound is quite tight [5]. However, for large num-
ber of channels, we may need more accurate approximation.
This can be calculated using Sun’s tube formula [6]. Now, let
us de ne an inhomogeneous Gaussian random eld

XHbO2 (r) = uHbO2 (r)
HZ. (22)

Now, a more compact representation for X(r) is in terms of
the two-dimensional representation manifold [5]:

U � {uHbO2(r), r ∈ Ψ} ⊂ R
KM . (23)

While the functional representation u(·) of a manifold is
nonunique, there are several quantities that are intrinsically
related U . One of them is the 2× 2 metric tensor matrix:

R(r) � E[∇XHbO2 (r)∇T XHbO2 (r)]. (24)

Then, nally we derive the following approximation:

P

{
max
r∈Ψ

ZT PHbO2 (r)Z ≥ z2

}
	 κ0ψ0(z), (25)

where

κ0 = |U| =
∫

Ψ

√
| det(R(r))|dr (26)

and

ψ0(z) =
Γ
(

3
2

)
2π3/2

(
1− Γ

(
3
2
,
z2

2

))
. (27)

The formula for p-value for the case of HbR can be derived in
a same manner. We now summarize the results in the follow-
ing:
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Theorem 4.1 The p-value for the one side t- test for HbO2/HbR
is lower bounded by

p ≥ 1
2

(
1− Γ

(
KM

2
,
z2

2

))
. (28)

Furthermore, the tube formula approximation of the p-value
is given by

p 	 κ0Γ
(

3
2

)
4π3/2

(
1− Γ

(
3
2
,
z2

2

))
(29)

where κ is given by Eq. (26).

5. EXPERIMENTAL RESULTS
To evaluate the practical usefulness of proposed methods, we
applied our new statistical analysis framework to right n-
ger tapping experiment data. The primary motor cortex is
the target region of right nger tapping task. Experimental
data were simultaneously acquired using a NIRS and fMRI
system. Speci cally, a NIRS system has 8 laser diodes and 4
detectors (Oxymon MK III, Artinis, Netherlands). In this sys-
tem, two continuous wave light (781nm, 856nm) were emit-
ted at each source ber. The distance between source and de-
tector was 3.5cm. MR images covering the whole brain were
acquired with the echo planar imaging (EPI) sequence using
a 3.0T MRI system (ISOL, Korea). In right nger tapping ex-
periment, the subject were instructed to perform a nger ex-
ion and extension repeatedly during task period. Figures 1
show the GLM results from right nger tapping task. The
activation map using fOSA [3] with Gaussian random eld
model is shown in Fig. 1(a). Note that fOSA cannot ana-
lyze the interpolated random eld, so the estimated activated
area is very rough. Our t-maps of ΔHbO2 over the thresh-
old obtained using incomplete gamma bound and Sun’s tube
formula are shown in Figs. 1(b) and (c), respectively. Note
that our activation pattern of ΔHbO2 is fairly consistent with
that of BOLD signal, as shown in Figs. 1(d). The incomplete
gamma bound gives very optimistic estimate of the activated
area, whereas the tube formula tells us that the more areas are
activated by the nger tapping. Both of the results exhibits
excellent correlation with the fMRI result. Furthermore, com-
pared to fOSA results in Fig. 1(a), our method allows super-
resolution localization.

6. CONCLUSION
We proposed a new theory of statistical inference which is op-
timal for NIRS. Instead of calculating the excursion probabil-
ity of the homogeneous Gaussian random eld by smoothing
samples on dense lattice, we calculated the p-value as the ex-
cursion probability which comes from the random eld that
are interpolated from the sparse measurement. Experimen-
tal results from the right nger tapping task showed that the
proposed method can localize the activation of primary motor
cortex very accurately.
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Fig. 1. Activation area using (a) fOSA [3], and (b) incomplete
Gamma bound, (c) tube formula, and (d) fMRI. p-value: 0.01.
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